
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007 193

Service-Oriented Smart-Home Architecture Based
on OSGi and Mobile-Agent Technology

Chao-Lin Wu, Member, IEEE, Chun-Feng Liao, Member, IEEE, and Li-Chen Fu, Fellow, IEEE

Abstract—The architecture of a conventional smart home is usu-
ally server-centric and thus causes many problems. Mobile devices
and dynamic services affect a dynamically changing environment,
which can result in very difficult interaction. In addition, how
to provide services efficiently and appropriately is always an im-
portant issue for a smart home. To solve the problems caused by
traditional architectures, to deal with the dynamic environment,
and to provide appropriate services, we propose a service-oriented
architecture (SOA) for smart-home environments, based on Open
Services Gateway Initiative (OSGi) and mobile-agent (MA) tech-
nology. This architecture is a peer-to-peer (P2P) model based
on multiple OSGi platforms, in which service-oriented mecha-
nisms are used for system components to interact with one an-
other, and MA technology is applied to augment the interaction
mechanisms.

Index Terms—Agent-based system, mobile agent (MA), multi-
agent system, Open Services Gateway Initiative (OSGi), smart
home, service-oriented architecture (SOA).

I. INTRODUCTION

A TRADITIONAL smart home is often implemented un-
der a centralized architecture, as shown in Fig. 1. The

home appliances are connected by the home network and con-
trolled by the home gateway, which is the platform for service
providers (SPs) to provide services to residents. However, as
information appliances with computing capabilities and intelli-
gent services are ubiquitous, the system can naturally distribute
its functionalities over these devices in the home environment,
which thus leads to a possible architecture designed based on
ubiquitous computing devices. Another critical problem within
smart homes is the dynamically varying home environment.
Mobile devices are not always connected to the system, and the
services configuration in the smart home is usually dynamic.
Therefore, dealing with the interaction between the system and
these mobile resources is not an easy task. In addition, the system
should not only wait for the execution of commands given by
the residents, but also collect information from the surrounding
environment, infer the current situation based on the collected
information, and react based on the scenario it actively infers.

Manuscript received September 5, 2005; revised January 23, 2006 and May 5,
2006. This work was supported by the National Science Council under Project
NSC93-2752-E-002-007-PAE. This paper was recommended by Guest Editor
F. Wang.

C.-L. Wu and C.-F. Liao are with the Department of Computer Science and
Information Engineering, National Taiwan University, Taipei 10617, Taiwan,
R.O.C. (e-mail: f89922042@ntu.edu.tw; d93922006@ntu.edu.tw).

L.-C. Fu is with the Department of Computer Science and Information
Engineering and the Department of Electrical Engineering, National Taiwan
University, Taipei 10617, Taiwan, R.O.C. (e-mail: lichen@ntu.edu.tw).

Digital Object Identifier 10.1109/TSMCC.2006.886997

In the light of the requirements mentioned above, it turns out
that the architecture of a smart home should be changed, thus, to
comply with emerging computer technologies and to appropri-
ately fulfill human requirements. To build such a smart home,
this paper proposes a service-oriented architecture (SOA) based
on Open Services Gateway Initiative (OSGi) [1] and mobile-
agent (MA) technology.

To develop a smart home, it is important to conform to open
standards. Otherwise, a variety of proprietary systems will cause
incompatibility, which can be harmful to the mass potential con-
sumer market [2]. In this regard, OSGi, which is an emerging
open standard for deploying services to smart-home environ-
ments, appears to be a good choice. The OSGi standard is essen-
tially a service-oriented component model. Managed software
components deployed in the OSGi platform are called “bun-
dles,” and the bundles can be installed, updated, or removed on
the fly without having to disrupt the operation of the device.
Bundles are libraries or applications that can dynamically dis-
cover other services from the service directory or can be used
by other bundles [3].

The architecture of a smart home based on OSGi is usually
designed according to the client–server paradigm, as shown in
Fig. 1 [4]. However, since this is a server-centric model, there is a
risk of single point of failure in the home gateway. Some research
has pointed out that the architecture of MAs is superior to the
traditional client–server architecture in distributed computing
[5], and others have suggested combining the MA architecture
with the traditional smart home to solve problems caused by
the client–server paradigm [6], [7], [42]–[45]. According to the
requirements or different situations, an MA can dynamically
migrate to ubiquitous devices in the home environment and use
the associated resources to accomplish its assigned tasks, thus
taking full advantage of ubiquitous computing.

SOA is a style of distributed computing that helps organiza-
tions share logic and data among multiple applications and usage
modes. The basic architecture of SOA is shown in Fig. 2. There
are three components interacting with one another, namely, the
service consumer, the SP, and the service directory. By using
the service-oriented approach, the system will have a flexible
infrastructure, which can easily adapt to user requirements. To-
gether with OSGi and the MA technology mentioned above,
SOA completes our architecture. SOA coordinates these plat-
forms and treats every interaction among them as a service
requesting/provision, thus playing the role of the middleware so
that these platforms can communicate with one another. As a
consequence, these OSGi platforms can access system informa-
tion, gather environment status, use services provided by others,
and dynamically create MAs to perform tasks.

1094-6977/$25.00 © 2007 IEEE

194 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 1. Typical architecture of traditional smart home.

Fig. 2. Service-oriented architecture.

The rest of this paper is organized as follows. Section II
overviews related works, and Section III describes the overall
system architecture. Section IV will address issues regarding the
design of the basic system platform, and a more thorough system
examination will be presented in Section V. In Section VI, the
system is evaluated by demonstrating an application scenario
and the experimental results. Conclusions are made and some
future works are suggested in Section VII.

II. RELATED WORKS

A. OSGi-Related Works

In recent years, there has been a lot of research related
to the construction of middleware based on the OSGi stan-
dard [8]–[12]. However, the initial plan of OSGi is to develop
home gateways, which makes the models adopted by these re-
searches server-centric. As a result, there is only one OSGi
platform in the proposed architectures, so that all the services
and computation tasks are managed at the gateway in a cen-
tralized manner, and all the other information appliances can
only be controlled by the home gateway instead of being op-
erated autonomously. However, there will be more and more
OSGi-compliant devices besides the OSGi gateway in the home
environment in the future such as the cell phones, automo-
biles, and so on [13]. The server-centric architecture cannot
take full advantage of the full capabilities of the ubiquitous

computing devices and is not suitable for ubiquitous computing
environments.

B. MAs

MAs were first proposed by White at General Magic in
1994 [14]. The concept of an MA was implemented as the
Telescript, while a runtime environment was also constructed
for the execution and migration of MAs. The Telescript was
patented in the U.S. in 1997 [15]. Chess et al. [5] authors pro-
posed “Itinerant Agents” in 1995, which are agents that are
generated and dispatched by computers and that execute some
management tasks over the network. The platforms of MAs con-
sist of the runtime environments and development application
program interfaces (APIs), and many different platforms were
proposed after 1997 [16]–[19]. The most well known among
them is the “Aglets” platform [18] developed by the IBM Tokyo
Research Center [20], and the most recent one is Tracy proposed
by Braun et al. [19]. Plant automation based on distributed sys-
tems (PABADIS) [21] is a project that aims to provide a plug-
and-participate environment, based on a platform with multiple
MAs, in production plants. In a typical PABADIS system, a
product agent (PA) is an MA that represents a work piece being
produced, and it migrates to several cooperative manufacturing
units (CMUs) to perform specific tasks. Because there are a
variety of heterogonous platforms of MAs, some efforts toward
standardization, like [22] and [23], have been attempted, but
none of them have been widely accepted.

To apply MA technology in a dynamic environment like a
smart home, there remain some problems. First of all, a prereq-
uisite for MAs is an agent host, the purpose of which is to let
every MA in an environment run its assigned tasks; but in fact it
is difficult to request that each device have an agent host embed-
ded in it in advance. Second, most of the current MA systems
lack interoperability, because their implementations are based
on a specific customized protocol. The third problem is the tight
coupling of MAs and the services they use. This means devel-
opers of MAs have to be aware of remote services and bind the

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 195

Fig. 3. P2P model of a smart-home environment.

agent to these services at development time. This tight coupling
is usually not desirable since it makes MAs lack robustness.
For example, if a remote host happens to remove some services
which are exactly those to which MAs are bound to, the MAs
will crash because of the abrupt exception.

III. ARCHITECTURE

The OSGi framework was originally designed for a home
gateway. However, the OSGi specification does not preclude the
use of multiple platforms in an environment. Recent progress in
the computing power of embedded systems has made it possible
to embed the OSGi platform inside intelligent appliances such
as the Interactive Television or home entertainment stations. The
OSGi whitepaper [13] also pointed out that in addition to home
gateways, more and more OSGi-based devices will appear in
our living spaces, such as cell phones and automobiles. Con-
sequently, instead of the traditional client–server architecture,
we propose in this paper to use a more distributed peer-to-peer
(P2P) model [24] for intelligent appliances (see Fig. 3), where
the OSGi platform appears in several devices, thus distributing
device-dependent services over several devices. The loading of
the home gateway is reduced due to the distributed deployment
of the bundles, and these local device-dependent bundles still
operate normally if the gateway crashes.

Based on this P2P model, the MA technology can be very
useful. When some OSGi service bundles can only be accessed
locally or certain data cannot be processed remotely, the OSGi
platform can embed the processing schedule into an MA and
send it to the target OSGi platform to perform tasks. The MA
can also dynamically choose its behavior according to pre-
embedded logic if the remote execution environment changes
the status, thus avoiding some erroneous actions and enhancing
the system’s capabilities.

Our proposed system architecture for smart-home environ-
ments is shown in Fig. 4. There are several components in this
architecture, and each component is an OSGi bundle. According
to our P2P model for OSGi, these components are distributed
over multiple OSGi platforms in the home environment. These
distributed platforms can communicate with one another based
on the service-oriented approach. As for the MA technology, it
facilitates the cooperation among these components. Detailed

information is given in Sections III-A–I, including the function-
alities of each component, and how they interact with others.

A. Interface Agent

1) Functionalities: This agent is responsible for interaction
between the user and other components. The status of the smart
home is, after being determined by this agent, presented to the
user, who then manages the smart home according to such col-
lected information. Next, this agent interacts with other agents
relevant to the management requests.

2) Interaction: At first, the interface agent queries the agent
directory to retrieve information about all the registered ser-
vices in the smart home. After that, when the user requests
services, the interface agent will: 1) call bundles directly if they
are located at the same platform; 2) send requests to the remote
platform like calling a web service if services are provided by
remote bundles; or 3) use an MA generator (MAG) to create
an MA which will migrate to a remote platform to consume
the services provided by bundles at a remote platform. With the
help of the MAG, a user can package some semantic scenario,
a series of actions, into an MA. As for the preference agent, a
user can use the interface agent to set his/her inference rules or
adjust his/her preference model, and subsequently the interface
agent will receive the service recommendation provided by the
preference agent according to the related setting and context.

B. Device Agent

1) Functionalities: This agent is the only one connected to
the devices and is responsible for direct communication with
all the devices. Usually, it will be a device-dependent bundle,
whose tasks are to control the devices, to monitor their status,
and to cooperate with other components, such as to receive their
service requests and/or to report to them the device status. It
will also monitor the status of the environment and transform
the observed phenomena into the raw data.

2) Interaction: The device agent will register itself at the
agent directory to provide the information about how other bun-
dles can interact with it, and it will receive service requests from
other components. Raw data will be sent to a context agent for
some inference purpose.

3) Devices: The devices controlled by the device agent can
be classified into two categories: sensor and appliance. The
difference between these two kinds of devices is that the latter
can be controlled to serve users, whereas the former can only
be used to collect data.

C. Service Agent

1) Functionalities: The service agent is usually a device-
independent bundle consisting of predefined basic functions. It
performs high-level control management by controlling several
device agents, or transforms raw data to high-level semantic
data, which are much more meaningful to human beings, by
integrating data extracted from Device Agents. Every service
agent is responsible for a specific function, like security
management, energy saving, etc. Note that although both web

196 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 4. System architecture.

services bundles and agent host bundles both belong to the
service agent, to simplify the presentation they are not explicitly
shown in Fig. 4, as they exist in almost every communication.

2) Interaction: The service agent also registers itself at the
agent directory to provide interaction information and receive
service requests from other components. Through the agent di-
rectory, every service agent retrieves information on related De-
vice Agents, and thus knows how to interact with them to per-
form the specified services. High-level semantic data are sent to
the context agent for inference purposes also.

D. Agent Directory

1) Functionalities: This component is a registry of service
bundles, which is the service directory in the SOA. The inter-
action information of public bundles, including where they are,
what services they provide, and what information is necessary
for other bundles to request their services, are stored in the
agent directory. In our architecture, this component is a univer-
sal descripition, discovery, and integration (UDDI) service in
the home domain.

2) Interaction: Any service bundle managing to provide ser-
vices to remote clients publishes itself as an agent to the agent
directory. Specifically, the bundle first registers itself on the reg-
istry of the web services bundle at its own OSGi platform, and
then the web services bundle publishes these registries to the
agent directory. The agent directory also provides information
for the agent coordinator to solve problems.

E. MAG

1) Functionalities: According to related information, this
component creates an MA by specifying trips and tasks in the
schedule of the MA based on the document type definition
(DTD) of the MA specification markup language (MASML),
which is be described in the following section.

2) Interaction: Based on the semantic scenario from the in-
terface agent or the preference agent, the MAG queries the
interaction information from the agent directory, and then trans-
forms the semantic scenario into an MASML document. After
that, the MAG returns this document, which is an MA, to the
agent requiring it, for the agent to dispatch this MA to perform
its tasks.

3) MA: An MA migrates to agent hosts in the smart home
to perform tasks according to its schedule. These tasks include
requesting services from bundles and processing data retrieved
from previous tasks. When an MA finds that the task conflicts
with some task of another MA, or that ambiguous information
exists in the schedule, it seeks help from the agent coordinator,
which solves conflicts or ambiguity by providing the current
status of the system.

F. Context Agent

1) Functionalities: This component plays the role of the data
aggregator. It transforms raw data and semantic data into context
data, provides context data for related queries, creates events
based on these data, and delivers these data-related events.

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 197

2) Interaction: The context agent registers itself in the agent
directory for other components to find it. Based on the informa-
tion provided by the agent directory, the context agent knows
how to interact with the Device Agent and the service agent in
the smart home, and then gathers data from these agents. Sub-
sequently, these data are transformed into context data based on
the preference model and inference rules, and are then sent to
the database agent for storage. When interpreting context data,
related messages are created and sent to the preference agent to
trigger events. Context data are provided to an MA to perform
computations, or to the agent coordinator to solve problems
caused by dynamically changing contexts.

G. Database Agent

1) Functionalities: This is the only agent connected to the
database, and its purpose is to manage all kinds of data in the
smart-home environment, including raw data, semantic data, and
context data. It also provides the interface for other components
to store or access data in the database.

2) Interaction: The database agent registers itself in the
agent directory for other components, especially the context
agent and the preference agent, to find it. It receives data from
the context agent and stores it, provides data query services for
an MA dispatched by other components, and provides the pref-
erence agent with all the necessary data for learning purposes.

3) Database: All kinds of data are stored here, including
raw data, semantic data, and context data.

H. Preference Agent

1) Functionalities: A home environment usually accommo-
dates several residents and each may have their preferences
toward different kinds of services. This agent preserves indi-
vidual preferences for various services. The preference agent
creates a preference model for each resident, customizes this
model through learning procedures, and updates the model
whenever possible. The preference agent also sets Inference
Rules according to requests from each resident. Moreover, ac-
cording to events as well as the preference model and infer-
ence rules, the preference agent reasons about semantic scenar-
ios and then performs related tasks or recommends service to
residents [25].

2) Interaction: The preference agent publishes itself in the
agent directory for the Interface Agent to find it and sends re-
quests to update the Inference Rules. It retrieves all the necessary
data from the database agent and learns the optimal preference
model. Based on the messages from the context agent, the pref-
erence agent looks up the preference model and inference rules
to create semantic scenarios if necessary. If there is an existing
scenario, the preference agent requests the MAG to create an
MA to perform tasks based on this scenario.

3) Preference Model and Inference Rules: The model and
rules are built and set for each resident. In general, the Infer-
ence Rules are usually static and set by the user, whereas, the
preference model is often dynamic and frequently updated. In
our system, the preference model is created and trained based
on the Bayesian belief network, and it builds a relationship

among the raw data, semantic data, and context data [25]. This
model is adopted by the context agent to check whether an
event has to be triggered after certain data changes and is
used by the preference agent to decide if a service has to be
provided.

I. Agent Coordinator

1) Functionalities: This component is mainly used for solv-
ing problems that arise from MAs. Since there are two sources
that create MAs, namely the Interface Agent and the preference
agent, the tasks of one MA may conflict with those of another
MA if these two sources have different requirements, hence
causing a feature interaction problem [26], [27]. The agent co-
ordinator can help solve this kind of conflict by checking the
current status of the environment. In addition, the environment
status triggering MA may have changed by the time the MA is
ready to fulfill its assigned mission, thus requiring the MA to
change its behavior accordingly. If the change in the situation
is predictable, embedded logic can help the MA to solve this
problem. However, the change is not always predictable. So, the
MAG may need to generate a flexible schedule for the MA and
allow the MA to consult the agent coordinator for a resolution.
If the problem cannot be solved, the agent coordinator will not
do anything, thus leaving the problem to be solved amongst the
residents. Because the MA carries error messages back to the
user, the user can always directly interact with the smart home
via the Interface Agent.

2) Interaction: The agent coordinator registers itself in the
agent directory for MAs to find it. It also queries the agent
directory, context agent, and database agent to retrieve related
information to solve problems for MAs as mentioned in the
previous section.

IV. INTEROPERABLE MA MIGRATION MECHANISM

The MA is a crucial component in our architecture, but the
OSGi specification does not explicitly define standard inter-
OSGi communicating mechanisms, thus causing agent hosts
deployed by each individual OSGi platform to be isolated across
different platforms. In order to deal with the problem related to
MAs mentioned above, we propose a new architecture for MAs,
in which their migration mechanisms are based on extensible
markup language (XML) and web services.

The core idea is to encode the plans, behaviors, and states of
MAs into XML-based scripting documents, the MASML, which
can be pulled or pushed with the web services and transmitted
over the hypertext transfer protocol (HTTP) and simple object
access protocol (SOAP) [28]. For example, an agent host can
initialize an MA by acquiring the MASML from a web service.
The agent host then starts to interpret the MASML and executes
several tasks or invokes external services, after which the results
or unexpected errors such as network failure are written back
to the document. Finally, this agent host is either directed to
let the MA migrate to the next agent host or returns the above-
mentioned document back to the original agent host after the
MA has finished all of its assigned tasks. Detailed design issues
are described in the later sections.

198 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 5. Inter-OSGi interaction via web services bundles.

A. Inter-OSGi Interaction with Web Services

As mentioned earlier, the major issue in our P2P model for
smart-home environments is the communicating mechanisms,
or protocol among OSGi platforms. The service-oriented ap-
proach we proposed to deal with this issue is that, in each OSGi
service platform, we deploy a web service gateway bundle. By
doing so, each OSGi platform can publish its services, which
makes other OSGi platforms aware of and able to utilize those
services. Each OSGi service that registers itself to this bundle
is able to interact with other web services through the SOAP,
which is a web services standard proposed by the World Wide
Web Consortium (W3C).

The major benefit of using the web services standard is that
it provides interoperability between OSGi and non-OSGi plat-
forms. For example, in Fig. 5, the OSGi platforms can publish
their local services as public web services via a web service
bundle, and consume the web services that are published by
other OSGi or J2EE [29] SPs.

However, due to security reasons and data issues, a service
bundle may publish itself, but cannot provide services to re-
mote clients, or it will limit access only to bundles at local
platforms. Under this circumstance, system environments with
multiple OSGi platforms, which are connected by web services
mechanisms, are in a configuration as shown in Fig. 6. It then fol-
lows that any client located at a remote platform cannot request
those constrained services directly, and hence, the MA technol-
ogy, which is discussed in next section, is used to solve this
problem.

B. MA Architecture for OSGi Platforms

Based on OSGi specifications, an agent host can be imple-
mented as a service bundle, and each OSGi-compliant device
can dynamically download it if necessary, thus fulfilling re-
quirements to set up execution environments for the MAs. As a
result, by incorporating the inter-OSGi interaction mechanism,
the agent host cannot only be deployed on the OSGi platform,
but also interact with an external environment via web services.
Note that the proposed approach here is based on open standards,

Fig. 6. OSGi platforms connecting with the web services mechanism.

Fig. 7. MA architecture for an OSGi platform.

and the services can be discovered and bound to the caller at
runtime in a typical OSGi environment.

Fig. 7 shows the proposed MA architecture for the OSGi
platform. In this architecture, the MAs can migrate to a number
of agent hosts deployed on different OSGi platforms and can
carry out some services provided by the target platform. By
doing this, nonpublic local service bundles can be called by
MAs via agent hosts, thus solving the problem mentioned at
the end of the previous section. From a technical point of view,
the migrating behavior of an MA is actually the transportation
of MASML documents over web services mechanisms, and
the service-execution behavior of an MA is actually realized
by the service manager component, which is instructed by the
interpreter according to the MASML document.

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 199

The web services bundle is the gateway to facilitate commu-
nication with external OSGi platforms. The agent hosts publish
their services by registering themselves on the registry of the
web services bundle. When the web services bundle receives a
request for the registered services, it delegates control of the
execution to the associated agent host bundle. Note that an
agent host bundle is composed of four components, namely, the
MASML interpreter, the agent specification, the service man-
ager, and the migration manager. The MASML interpreter an-
alyzes and executes the incoming MASML documents accord-
ing to the agent specification interpretation algorithm (ASIA),
the details of which are discussed later. When the interpreter
finds that services have to be executed, the service manager is
responsible for looking up the references for these services and
invoking them. Finally, if the MA needs to migrate to another
host, the migration manager performs the migration service by
calling the target agent host bundle registered as a remote web
service.

The architecture supports both the pull and push model on the
acquirement of MASML. In the push model, the agent host bun-
dle plays a more passive role and waits for MASML documents
to be executed. The syntax of MASML also supports the hyper-
linked feature, which is the nature of web documents. For exam-
ple, in order to enhance reusability, an MASML document may
import one or more remote documents by providing the uniform
resource locator (URL) as a reference. The HTTP client module
is responsible for fetching this type of remote document from
an MASML provider, which is usually a web server or an ap-
plication server responsible for hosting or generating MASML
documents. Note that the pull model also implies that MASML
can be dynamically generated at runtime by server-side script-
ing languages provided by the web servers, e.g., the hypertext
preprocessor (PHP) provided by Apache web servers or active
server pages (ASP) provided by the internet information server
(IIS) web server. The server-side scripting technologies greatly
increase the flexibility of MASML because the servers can pro-
duce personalized documents according to different requests.

C. MASML

The core concepts of MASML can be expressed via a concep-
tual object model in the unified modeling language (UML) class
diagram (see Fig. 8). In this model, the behaviors and states of
an MA are specified through the MA specification. Here, an MA
is created for fulfilling a specific request by migrating through
a series of agent hosts. We call this type of migration process a
“trip,” and within each agent host, a number of tasks have to be
carried out. Accordingly, an MA specification consists of one or
more Trips, and each Trip consists of one or more tasks. There
are two types of Task in the MASML object model, namely,
“logic” and “service.” A “service” means an external function
call to OSGi services, whereas “logic” stands for an inference
procedure for internal data processing in an agent.

According to the object model, we propose an XML-based
markup language, MASML, to reify this conceptual object
model. The DTD below also provides a formal definition of
this markup language (see Fig. 9).

Fig. 8. Conceptual object model of a mobile-agent specification.

Fig. 9. DTD of the MASML.

Fig. 10 is an example of a valid MASML document, which
represents a “turn on lamp” MA. We do not include the headers
and DTD declarations of a standard XML file so that only the
major content of the MASML is focused upon. In this document,
the agent’s ID and URL are provided whereby the MA can return
to the original agent host. In this example, the MA migrates from

200 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 10. MASML of a “turn on lamp” mobile agent.

Fig. 11. MASML of a “turn on lamp” mobile agent with failure handling.

agentHost0 to agentHost1 in order to execute a lamp control
service. MA returns to agentHost0 after the task to turn on the
lamp is accomplished. Since the tasks are executed serially,
the “current-trip” element stores the current state of the whole
journey of an MA. For example, if there are five trips in this
document, the “current-trip” element will point out which trip
the MA is currently located in.

Sometimes an agent has to process data or react to the results
of service executions. We provide this type of agent logic by
the European Computer Manufacturers Association (ECMA)
script [30]. ECMA is an organization facilitating the creation
of information and communications technology (ICT) and con-
sumer electronics (CE) standards. In Fig. 11, an example of
a MASML with an embedded ECMA script is given. In this
example, an additional logic element is added that requires log-
ging into the system database in order to react to the failure
condition. The script is surrounded by character data (CDATA)

Fig. 12. MASML of a “turn on lamp” mobile agent with service filtering.

to ensure that the special characters, which may conflict with
XML syntax, are escaped. The embedded script is processed
and interpreted by the Rhino scripting engine, an open-source
project hosted in Mozilla [31].

To provide more flexible services, the MA is allowed to
select and bind the services dynamically. To attain this, the
lightweight directory access protocol (LDAP) search filter [31],
as suggested by the OSGi, is used. Fig. 12 shows a “turn on
lamp” agent using the service filter. To use a service filter, ser-
vice consumers have to pass a “filter” parameter when calling
the service. In this example, the symbol “&” means AND rela-
tionship, and “= ∗” means an existing test. As a consequence,
“(&(place=livingroom) (light= ∗))” means that the service will
only be selected only if the lamp is in the living room and the
light is turned on. A more complete syntax of LDAP search
filters can be found in [32].

D. ASIA

ASIA is intended to provide a behavioral view of the agent
hosts that is capable of interpreting MASML. The communi-
cations between agent hosts are based on web services, which
implies that an agent host does not always have to be imple-
mented on an OSGi platform. As a result, an MA can migrate
to any agent host that can interpret the MASML with ASIA. On
the other hand, if the service platform is not OSGi-based, the
MASML interpreter has to be designed so that it can process
the service filtering appropriately.

Fig. 13 shows the Agent Specification Interpretation Algo-
rithm. UPDATE TRIP COUNT means that the trip count is
increased by one after each migration is done in order to keep
track of the current trip section that the interpreter is execut-
ing. After the current trip section, indexed by the trip count
(T[i]), is found, its registered tasks are interpreted sequentially,
and in turn some services or logics are carried out according
to the agent specification, EXECUTE TASK(T[i]). Next, the
execution result is processed with HANDLE ERROR() and up-
dated with APPEND RESULT(). Finally, after the tasks are all

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 201

Fig. 13. Agent specification interpretation algorithm.

finished, the MA either returns to the original agent host by call-
ing the GO HOME() or migrates again to its next destination
by calling the MIGRATE().

V. ANALYSIS AND DISCUSSION

In this section, we first analyze system performance under
three different models and then discuss fault tolerance issues.

A. Performance

Assume that there are n clients requesting services at the
same time; each service involves m SPs and costs each provider
p computation time units. Each service has to interact with the
service client with j messages, and it costs i network traffic
units to transmit one message, whereas, every migration of an
MA requires k network traffic units. Each SP produces data for
a client, and the underlying process costs q computation time
units. Finally, to simplify the representation, we assume that it
also costs q computation time units to integrate all these data
returned from each SP.

For a conventional server-centric architecture, to perform the
scenario mentioned above, each client must send service re-
quests to the server, and then the server interacts with these m
SPs by sending j messages to accomplish these service requests.
After receiving data from these SPs, the server processes these
data, integrates them, and returns the final results to the clients.
Analysis is shown in Table I, in which SP stands for “service
provider,” (∗ n) and (∗ m) represent the possible numbers of the
associated entities, and 1∼ n in the two SP columns means each
SP accepts 1∼ n service requests, thus changing the workload
of its network traffic and computation.

As for the P2P SOA, clients query the service directory first
to retrieve information about SPs, and then interact with m
SPs remotely by sending j messages to each. When a client

TABLE I
PERFORMANCE ANALYSIS OF THE SERVER-CENTRIC ARCHITECTURE

TABLE II
PERFORMANCE ANALYSIS OF THE P2P SOA

TABLE III
PERFORMANCE ANALYSIS OF P2P SOA WITH MA

receives data that are returned from m SPs, it processes them,
hence costing q computation time units for each one, and then
integrates them. Performance analysis is shown in Table II.

Table III shows the performance analysis of our proposed
model. Here clients also query the service directory first to
retrieve information about SPs, and then create MAs embedded
with interaction logic based on service requirements. After that,
every client sends its MA to SP, and since the MA represents
the client, the SP can directly interact with the MA locally,
thus avoiding remote interaction that creates a lot of network
traffic usage. Besides that, the MA uses the resources of the
SP to process data based on its previously embedded logic,
thus reducing the computation load of clients in P2P models.

202 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

However, to embed logic into the MA increases its size, thus
costing (k − i) additional network traffic units relative to that
for normal messages. Finally, when the MA returns back to the
client, it carries the processed data for the client to perform the
final integration. Note that we assume the result carried back by
the MA only increases the size of the MA by as much as that
for a normal message.

Observing the computation load part in these three tables, we
can see: 1) that the total computation load is always the same;
2) the load of the SP does not change much; and 3) the main
difference lies in the client part. In the P2P model, the server
load in server-centric architecture is distributed among n clients.
Although this kind of distribution seems fair, it is not suitable
for clients who lack computation power, especially for mobile
devices carried by people. Based on our proposed architecture,
with the help of MAs, the computation load of a client who lacks
computing power can be more widely distributed to more SPs,
and the distributed load is not transferred to one single server
only, which is the situation in the server-centric model.

As for the network part, from a server-centric architecture
to a P2P SOA, the total traffic is decreased while each client
handles more, thus distributing the network traffic. It is not
easy to compare network traffic in P2P SOA and those with
MAs, because there are different types of network traffic units
which cannot be compared directly, and further analysis will be
discussed later. Note that an MA helps to decrease the number of
remote interactions between a client and an SP by sending j × m
messages in total to transmitting one MA instead, but such
seemingly simplified network traffic handled by a client actually
increases, since the size of the MA is greater than that of a normal
message. However, for a current mobile device which has a
dynamic network connection, the MA can drastically decrease
the number of interactions, and if the MA can be sent within
a short period of time, the time the mobile device needs to
maintain the network connection is also decreased drastically
from the entire service period to the period of time needed to
send the MA, and then receive it.

Comparing network traffic in P2P SOAs and those with MAs,
the network traffic of a client is increased by i + 2(k − ijm), so
if the size of an MA is equal to, or even less than, the size of all
the interaction messages, the network traffic does not cost much.
As for the SP, the network traffic is increased by i + 2(k − ij)
for each service. Based on the earlier assumption, this increased
amount is roughly i + 2ij(m − 1), which shows that any SP
receiving an MA has to pay an additional network traffic cost
for the data needed for other SPs. However, since SPs usually
stay at permanent networks, this additional traffic does not cost
much.

B. Fault Tolerance

In this section, for each component, we discuss the situations
in which it may fail.

1) Interface Agent: If this agent fails, the user cannot know
the system’s status, and also loses the ability to directly interact
with the system. However, if the other components still work,
the preference agent continues to provide services to the user

based on the preference model and inference rules, and the user
can still interact with the system manually in a conventional
lifestyle.

2) Device Agent: Since our architecture is based on the P2P
model, failure of one device does not affect the other ones.
Therefore, the whole system can still function well, except that
the services provided by the failed Device Agent are no longer
available.

3) Service Agent: The situation resulting from a failed ser-
vice agent is the same as that of a failed Device Agent.

4) Agent Directory: Without the agent directory, all system
components can neither publish their own services to others nor
update the information telling others how to interact with it. In
other words, system components do not know whether a new
service has been added to the system or a previously existing
service has been removed. Due to the lack of dynamic informa-
tion provided by the agent directory, the agent coordinator is not
able to solve problems arising from MAs, and the MAG is also
not able to generate MAs with dynamic schedules. However,
the relationships established before the agent directory fails still
exists, so: 1) the user can still directly use the service agent
and control the Device Agent; 2) the context agent still gathers
system data; and 3) the preference agent keeps providing static
services. Note that by federating several UDDI services, infor-
mation stored in the agent directory can be replicated, hence
preventing the aforementioned situation.

5) MAG: If this component fails, new MAs cannot be cre-
ated in the system. However, this component can also be dupli-
cated, so that there are multiple ones in the system. Moreover,
the MAG can even be embedded into the Interface Agent or pref-
erence agent to prevent loss of help from the potential failure of
the MAG.

6) Context Agent: Without help from the context agent, con-
text data are not interpreted, and the system’s status is not up-
dated into the database, either. The former would mean that
no messages could be sent to the preference agent to trigger
events, and the latter affects the updating of the preference model
through learning, due to the lack of new preference data. Al-
though the system is not able to provide context-aware services,
the user can still interact with the smart home via the Interface
Agent.

7) Database Agent: If the database agent fails, the system’s
status cannot be updated into the database, therefore stalling the
updating of the preference model due to the lack of new pref-
erence data. Although the preference model cannot be updated,
the user can still interact with the system, and context-aware
services can still be provided.

8) Preference Agent: The failure of this agent voids context-
aware services. However, the user can still interact with the smart
home, and the context agent continues to update the database, so
the preference model can resume updating once the preference
agent is recovered.

9) Agent Coordinator: Without the help of the agent coor-
dinator, MAs are not able to solve conflicts or to determine dy-
namic schedules. However, other components are not affected,
and MAs carry error messages back to the user, thus leaving the
user to solve the problem manually.

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 203

VI. SYSTEM EVALUATION

This section evaluates our proposed architecture. The sig-
nificance of our proposed work lies mainly in the P2P model
for OSGi and the MA mechanism. The former achieves in-
teroperable multiplatforms, while the later automates semantic
scenario via logic and schedules. We first describe the applica-
tion scenario to address those two significant features, and then
present the prototype implementation as well as the results of
the experiments.

A. Application Scenario

Alice leaves her office for home at 17:30, with a smart phone
loading her unfinished documents. On her way home, while
Alice is using the smart phone to write e-mails to arrange a
meeting for the next day, she receives a phone call from her
boyfriend, Bob, who sends her a new MP3-formatted song as
a gift and asks her out for a dinner and an opera. Alice gladly
updates the calendar in her smart phone with this 19:30 date and
stores the song in her smart phone.

When Alice returns home at 18:30, her home gateway sends
an MA to perform tasks as usual. The MA migrates to her smart
phone to retrieve Alice’s unfinished works, including unsent
e-mails and unfinished documents. The MA also checks Alice’s
calendar and finds that Alice is going out on a date. The MA
then migrates to her entertainment station to play Alice’s favorite
music, and then to inform the entertainment station that Alice
is not going to stay at home that night. After that, the MA
migrates to her PC to store Alice’s documents and send her
e-mails. Finally, the MA migrates back to the home gateway.
Instead of heating water at the usual 21:00 time, the MA asks
the home gateway to heat water for Alice to bathe immediately,
as Alice must prepare for her date.

As the MA from the home gateway performs its tasks, the
smart phone also sends an MA, scheduled by Alice on her
way home, to perform other tasks. This MA first migrates to
the entertainment station where it stores the new song from
Bob and also plays it. However, the last action causes a feature
interaction problem because this MA wants to play a music
selection different than the one previously played by the MA
from the home gateway, and hence, the agent coordinator is
asked to solve this feature interaction problem. After that, the
MA migrates to the PC to get information for the date that night,
including the ideal route, restaurant menu, and opera. Finally,
the MA returns to the smart phone with the information.

When the entertainment station is notified that Alice is not
going to stay at home, it automatically schedules the recording
of the television shows Alice usually watches at 20:00, and
also sends out a third MA to perform new tasks. Originally, the
entertainment station had planned to inform Alice at dinner time
that a DVD in which she was intererested was released that day.
Since Alice is not going to eat dinner at home, the MA from
the entertainment station first migrates to the PC to check DVD
shops in the area where Alice’s date is going to take place, and
then migrates to the smart phone to store this information about
the newly released DVD where Alice will see it.

Fig. 14. Experimental prototype.

After showering, Alice goes out for her date with the smart
phone, which has stored the information about the date and
DVD. With this information, Alice can easily go to the restau-
rant, order from the menu, discuss the opera with Bob over
dinner, and purchase the DVD at a shop near the theater.

Without the MA mechanisms, many tasks would not be au-
tomated, especially those tasks performed by the MA from the
smart phone, and things would not be so easy and comfortable
for Alice. In addition, if our P2P model for OSGi is not used,
the performance of the home gateway suffers, and the capabili-
ties of the various computing devices are not fully utilized. This
issue is addressed in the next section.

B. Prototype Implementation

In order to evaluate the effectiveness of the proposed
architecture, we have built an experimental prototype, as shown
in Fig. 14. The agents are realized as OSGi bundles and are
deployed on Knopflerfish 1.3.4 [33], which is an open source
OSGi R3 implementation. These OSGi platforms are hosted on
P3/600 MHz mini-PC with 512 MB RAM.

To enhance the flexibility of this prototype, the inter-
agent communications are implemented according to a
publish-subscribe messaging style with an embedded message
broker bundle, which is developed, based on an open-source
lightweight embeddable message queue called ActiveMQ [34].
The web services functionalities are provided by Apache
Axis 1.1 bundle service that shipped with Knopflerfish OSGi
implementation, and the MySQL 4.0.18 is used as the reposi-
tory of context and preference information.

C. Performance Evaluations

To study the performance of three different interaction mod-
els (server-centric, P2P, and P2P + MA), we have conducted
experiments with our prototype implementations. In each ex-
periment, we use a task controller to initialize the execution of
a new task and to measure the turnaround time of execution.
A task is a sequence of executable procedures on devices dis-
tributed over the network. Upon receiving a new task, the OSGi
platforms have to collect data from devices, and then integrate
the data as well as perform reasoning to produce the results.

204 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 15. Performance evaluations of different interaction models.

Experimental environments are described below. In the first
scenario (server-centric), there is a single OSGi platform con-
nected with six devices. As for the second and third scenarios
(P2P and P2P + MA), there are three OSGi platforms inter-
connecting with one another via Ethernet locally, and each plat-
form is connected with two devices. Each task is defined as
sequentially gathering data from six devices and then perform-
ing integrating/reasoning procedures in OSGi platforms. The
time to integrate/reason and the data retrieval latency are both
set as 100 ms.

Fig. 15 shows the results of the experiments. Compared to
the server-centric interaction model, the turnaround time is de-
creased drastically with either P2P or P2P + MA one. As pointed
out in Section V, the performance gains come from the parallel
processing of concurrent tasks on several OSGi platforms. In
the P2P + MA interaction model, the performance is even bet-
ter. Because the services are invoked locally in the P2P + MA
model, most of the costs come from the migration latency. Con-
sequently, the experiment results show that the P2P + MA model
helps to reduce the task execution time by parallel processing
of tasks and local execution of services.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an SOA for a smart-home en-
vironment, and this architecture is based on OSGi and MA tech-
nology. We have proposed a P2P interaction model with multiple
OSGi platforms instead of a conventional server-centric model,
thus taking advantage of all the resources in the smart-home
environment by distributing the working load over the system.
With OSGi technology, an agent host, which is a prerequisite
to apply MA technology, can be dynamically downloaded to
the platform, by creating an environment suitable for a MA.
MAs are used in our architecture to deal with dynamic situa-
tions and further distribute loading from client to multiple SPs.
To preserve interoperability between agent hosts, we propose
a web services-based migration mechanism for MAs. MAs are
encoded with MASML, which can then migrate over and con-
sume services within several agent hosts that support ASIA.
The service-oriented approach is applied in our architecture

so that all the components can dynamically join/leave the sys-
tem, and the SOA coordinates the interactions between these
platforms.

At this point, we focus on the service integration and mobility
within the home environment. A possible extension of our work
is to export the OSGi-hosted services to the external environ-
ments. Moyer et al. [35], [36] proposed an extended version of
a session initiation protocol (SIP) [37], which aims to export the
home services of networked appliances to the mobile environ-
ments. SIP is originally a call-setup and session management
protocol widely used in the internet protocol telephony environ-
ment, and it has many attractive features such as asynchronous
notification and session control, which are not addressed in the
conventional HTTP. Recently, these features can be found in the
emerging second generation of web services standards proposed
by OASIS [38]. Due to the ubiquity of HTTP and the advantages
of XML, the approach based on web services is a competitive
alternative.

In the future, we will extend the capabilities of the MASML
DTD to make MAs more flexible. We will also use the ontology
web language (OWL) [39] to model our context after the cur-
rent preference model in this paper and also on human behavior
analysis. In addition, techniques from [26] and [27] will be stud-
ied and applied with MAs, e.g., embedding priority information
into an MA for locking or restricting the access of the resources,
to solve the details of feature interaction problems in such a
multiagent environment. The security issues within agent mi-
gration, services installation, and service providing will also be
addressed. Based on existing open web services security specifi-
cations such as the security assertion markup language [40], and
extensible access control markup language [41], the platform
will ideally be able to provide transparent security mechanisms
more easily. We will also try to evaluate the implementation
complexity and cost of the proposed system. Finally, we will
attempt to efficiently integrate, find, and use multiple resources,
to distribute the working load even further, and to enhance the
fault tolerance of the smart-home environment.

REFERENCES

[1] OSGi alliance [Online]. Available: http://www.osgi.org
[2] K. Wacks, “The successes and failures of standardization in home sys-

tems,” in Proc. 2nd IEEE Conf. Standardization Innovation Inf. Technol.,
Boulder, CO, Oct. 2001, pp. 77–88.

[3] OSGi service platform R3 [Online]. Available: http://www.osgi.org/
documents

[4] R. S. Hall and H. Cervantes, “Challenges in building service-oriented
applications for OSGi,” IEEE Commun. Mag., vol. 42, no. 5, pp. 144–
149, May 2004.

[5] D. M. Chess, B. Grosof, C. G. Harrison, D. Levine, C. Paris, and G. Tsudik,
“Itinerant agents for mobile computing,” IBM T. J. Watson Res. Center,
Yorktown, NY, Tech. Rep. RC 20010, Oct. 1995.

[6] C. L. Wu, W. C. Wang, and L. C. Fu, “Mobile agent based integrated
control architecture for home automation system,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., vol. 4, Sep. 28–Oct. 2, 2004, pp. 3668–
3673.

[7] J. J. Yoo and D. I. Lee, “Scalable home network interaction model based on
mobile agents,” in Proc. 1st IEEE Int. Conf. Pervasive Comput. Commun.
(PerCom 2003), Mar. 23–26, 2003, pp. 543–546.

[8] X. Li and W. Zhang, “The design and implementation of home network
system using OSGi compliant middleware,” IEEE Trans. Consum. Elec-
tron., vol. 50, no. 2, pp. 528–534, May 2004.

WU et al.: SERVICE-ORIENTED SMART-HOME ARCHITECTURE 205

[9] H. Ishikawa, Y. Ogata, K. Adachi, and T. Nakajima, “Building smart
appliance integration middleware on the OSGi framework,” in Proc. 7th
IEEE Int. Symp. Object-Oriented Real-Time Distrib. Comput., May 2004,
pp. 139–146.

[10] D. Valtchev and I. Frankov, “Service gateway architecture for a smart
home,” IEEE Commun. Mag., vol. 40, no. 4, pp. 126–132, Apr. 2002.

[11] C. Lee, D. Nordstedt, and S. Helal, “Enabling smart spaces with OSGi,”
IEEE Pervasive Comput., vol. 2, no. 3, pp. 89–94, Jul.–Sep. 2003.

[12] T. Gu, H. K. Pung, and D. Q. Zhang, “Toward an OSGi-based infrastructure
for context-aware applications,” IEEE Pervasive Comput., vol. 3, no. 4,
pp. 66–74, Oct.–Dec. 2004.

[13] OSGi technical whitepaper [Online]. Available: http://www.osgi.org/
documents/

[14] J. White, “Mobile agents white paper,” General Magic, Inc.. Sunnyvale,
CA, White Paper, 1996.

[15] J. E. White, C. S. Helgeson, and D. A. Steedman, “System and method
for distributed computation based upon the movement, execution, and
interaction of processes in a network,” U.S. Pat. Off., Washington, DC,
U.S. Patent 5,603,031, 1997.

[16] J. Baumann, F. Hohl, K. Rothermel, M. Schwehm, and M. Straber, “Mole
3.0: A middleware for Java-based mobile software agents,” in Proc. Mid-
dleware 1998: IFIP Int. Conf. Distrib. Syst. Platforms Open Distrib. Pro-
cess., 1998, pp. 355–372.

[17] D. Johansen, “Mobile agent applicability,” in Proc. 2nd Int. Workshop
Mobile Agents, Sep. 1998, pp. 80–98.

[18] Aglets [Online]. Available: http://aglets.sourceforge.net/
[19] P. Braun and W. Rossak, Mobile Agents—Basic Concepts, Mobility Mod-

els, and the Tracy Toolkit. San Mateo, CA: Morgan Kaufmann, 2005.
[20] D. B. Lange and M. Oshima, Programming and Deploying Java Mobile

Agents with Agelets. Reading, MA: Addison-Wesley, 1998.
[21] PABADIS project, [Online]. Available: http://www.pabadis.org/
[22] Object Management Group. Mobile agent system interoperability facilities

specification [Online]. Available: http://www.omg.org/docs/orbos/97-10-
05.pdf

[23] FIPA Agent Management Support for Mobility Specification, FIPA Spec-
ifications 00087, Foundation for Intelligent Physical Agents, [Online].
Available: http://www.fipa.org/specs/fipa00087/

[24] N. Minar and M. Hedlund, “A network of peers: Peer-to-peer models
through the history of the Internet,” Peer-To-Peer: Harnessing the Power
of Disruptive Technologies. Sebastopol, CA: O’Reilly, Mar. 2001.

[25] L. M. Chen, C. L. Wu, and L. C. Fu, “Automatic personal preference
learning system in intelligent e-home,” Presented at 8th Int. Conf. Autom.
Technol., Taichung, Taiwan, May 2005.

[26] M. Kolberg, E. H. Magill, and M. Wilson, “Compatibility issues between
services supporting networked appliances,” IEEE Commun. Mag., vol. 41,
no. 11, pp. 136–147, Nov. 2003.

[27] M. Wilson, E. H. Magill, and M. Kolberg, “An online approach for the
service interaction problem in home automation,” in Proc. 2nd IEEE
Consum. Commun. Netw. Conf., Jan. 3–6, 2005, pp. 251–256.

[28] XML Protocol. W3C Recommendation [Online]. Available: http://www.
w3.org/2000/xp/Group/

[29] J2EE [Online]. Available: http://java.sun.com/j2ee/
[30] ECMA-262 [Online]. Available: http://www.ecma-international.org/
[31] Mozilla java script project [Online]. Available: http://www.mozilla.org/js/
[32] T. Howes, A String Representation of LDAP Search Filters, IETF RFC

1960, 1996.
[33] Knopflerfish 1.3.4 [Online]. Available: http://www.knopflerfish.org/
[34] ActiveMQ, [Online]. Available: http://www.activemq.org/
[35] S. Moyer, D. Marples, and S. Tsang, “A protocol for wide area, secure

networked appliance communication,” IEEE Commun. Mag., vol. 39,
no. 10, pp. 52–59, Oct. 2001.

[36] S. Moyer, D. Maples, S. Tsang, and A. Ghosh, “Service portability of
network appliances,” IEEE Commun. Mag., vol. 40, no. 1, pp. 116–121,
Jan. 2000.

[37] M. Handley, SIP: Session Initiation Protocol, IETF RFC 2543, Mar. 1999.
[38] OASIS. Organization for the Advancement of Structured Information

Standards. [Online]. Available: http://www.oasis-open.org/
[39] OWL web ontology language overview [Online]. Available: http://www.

w3.org/TR/owl-features/

[40] Security assertion markup language [Online]. Available: http://www.
oasis-open.org/specs/index.php

[41] eXtensible access control markup language [Online]. Available: http://
www.oasis-open.org/specs/index.php

[42] F-Y. Wang and C.-H. Wang, “Agent-based control systems for operation
and management of intelligent network-enabled devices,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern., vol. 5, Oct. 2003, pp. 5028–5033.

[43] F.-Y. Wang, “Agent-based control for fuzzy behavior programming in
robotic excavation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 540–548,
Aug. 2004.

[44] , “Agent-based control for networked traffic management systems,”
IEEE Intell. Syst., vol. 20, no. 5, pp. 92–96, Sep./Oct. 2005.

[45] F.-Y. Wang and G. N. Saridis, “A coordination theory for intelligent ma-
chines,” Automatica, vol. 26, no. 5, pp. 833–844, 1990.

Chao-Lin Wu (M’03) received the B.S. degree in in-
dustrial technology education from the National Tai-
wan Normal University, Taipei, Taiwan, R.O.C., in
1996. Currently, he is working toward the Ph.D. de-
gree at the National Taiwan University, Taipei.

His research interests include smart homes, smart
environments, intelligent spaces, context-aware tech-
nologies, intelligent agents, and topics related to
them.

Chun-Feng Liao (M’06) received the B.S. and
M.S. degrees in computer science from the National
Cheng-Chi University, Taipei, Taiwan, R.O.C., in
1998 and 2004, respectively. Currently, he is work-
ing toward the Ph.D. degree at the National Taiwan
University, Taipei.

His research interests include intelligent systems,
context-aware middleware, and service-oriented soft-
ware architecture in smart living spaces.

Li-Chen Fu (M’84–SM’94–F’04) received the B.S.
degree from the National Taiwan University, Taipei,
Taiwan, R.O.C., in 1981, and the M.S. and Ph.D. de-
grees from the University of California, Berkeley, in
1985 and 1987, respectively.

Since 1987, he has been a Faculty Member in the
Department of Electrical Engineering and the De-
partment of Computer Science and Information En-
gineering, National Taiwan University, where he cur-
rently is a Professor. His research interests include
robotics, flexible manufacturing systems scheduling,

shop floor control, home automation, visual detection and tracking, e-commerce,
and control theory and applications.

He is a Senior Member of the IEEE Robotics and Automation Society and
the IEEE Automatic Control Society.

